Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 5472, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361854

RESUMO

Human activity recognition (HAR) using machine learning (ML) methods has been a continuously developed method for collecting and analyzing large amounts of human behavioral data using special wearable sensors in the past decade. Our main goal was to find a reliable method that could automatically detect various playful and daily routine activities in children. We defined 40 activities for ML recognition, and we collected activity motion data by means of wearable smartwatches with a special SensKid software. We analyzed the data of 34 children (19 girls, 15 boys; age range: 6.59-8.38; median age = 7.47). All children were typically developing first graders from three elementary schools. The activity recognition was a binary classification task which was evaluated with a Light Gradient Boosted Machine (LGBM) learning algorithm, a decision tree based method with a threefold cross validation. We used the sliding window technique during the signal processing, and we aimed at finding the best window size for the analysis of each behavior element to achieve the most effective settings. Seventeen activities out of 40 were successfully recognized with AUC values above 0.8. The window size had no significant effect. In summary, the LGBM is a very promising solution for HAR. In line with previous findings, our results provide a firm basis for a more precise and effective recognition system that can make human behavioral analysis faster and more objective.


Assuntos
Dispositivos Eletrônicos Vestíveis , Algoritmos , Criança , Feminino , Atividades Humanas , Humanos , Aprendizado de Máquina , Masculino , Movimento
2.
PLoS One ; 15(7): e0236092, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32687528

RESUMO

Automated monitoring of the movements and behaviour of animals is a valuable research tool. Recently, machine learning tools were applied to many species to classify units of behaviour. For the monitoring of wild species, collecting enough data for training models might be problematic, thus we examine how machine learning models trained on one species can be applied to another closely related species with similar behavioural conformation. We contrast two ways to calculate accuracies, termed here as overall and threshold accuracy, because the field has yet to define solid standards for reporting and measuring classification performances. We measure 21 dogs and 7 wolves, and find that overall accuracies are between 51 and 60% for classifying 8 behaviours (lay, sit, stand, walk, trot, run, eat, drink) when training and testing data are from the same species and between 41 and 51% when training and testing is cross-species. We show that using data from dogs to predict the behaviour of wolves is feasible. We also show that optimising the model for overall accuracy leads to similar overall and threshold accuracies, while optimizing for threshold accuracy leads to threshold accuracies well above 80%, but yielding very low overall accuracies, often below the chance level. Moreover, we show that the most common method for dividing the data between training and testing data (random selection of test data) overestimates the accuracy of models when applied to data of new specimens. Consequently, we argue that for the most common goals of animal behaviour recognition overall accuracy should be the preferred metric. Considering, that often the goal is to collect movement data without other methods of observation, we argue that training data and testing data should be divided by individual and not randomly.


Assuntos
Comportamento Animal , Aprendizado de Máquina , Animais , Cães , Feminino , Masculino , Modelos Estatísticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...